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Nonisothermal heat exchange during the laminar  flow of liquids having a l inear  law of 
fluidity in the thermal  initial sect ion of channels is analyzed. The calculation for  the 
condition that tw=const  takes into account the effect of the tempera ture  on the ze ro -  
point fluidity and the coefficient of instability of the s t ructure  when the thermal  con- 
ductivity (diffusion) depends on the shear  s t r e s s .  

The problem of the effect of the nonisothermici ty of a s t r eam on the local heat exchange cha rac t e r i s -  
t ics during the flow of n0n-Newtonian liquids in the initial section of channels is very  complicated. Because 
of the nonlinearity of the original equations the es t imates  of the effect of nonisothermici ty are  based on the 
results  of numerical  calculation [1]. It is desirable to have equations, if only approximate,  reflecting the 
effect in explicit form.  

The main purpose of the present  report  is to take into account the dependence on the tempera ture  and 
the tangential shear  s t r e s s  if) of the effect of the fluidity (the rec iprocal  of the viscosi ty p= l /g0)on the 
principal  dynamic and thermal  charac te r i s t i c s  of the laminar  s t r eam in the thermal  initial section of chan- 
nels. An established velocity profile at the entrance to the channel and a constant wall t empera ture  along 
its length are  assigned in this case.  It is also assumed that the Prandtl  numbers  of the liquids under con- 
s iderat ion are much l a r g e r  than unity and that their  coefficient of thermal  conductivity can depend on r .  
The calculations per formed below remain in force for  the study of effects in the diffusional initial section 
of channels.  In this case the fluidity is set up as a function of r and the concentrat ion of the substance. 

The calculation is conducted for  rheological liquids (including the case of ordinary liquids with | m 0) 
which obey a l inear  law of fluidity [2] 

W 
~_qD (~, t) = ~o i t ) :+  e (t)iI~l~ (1) 

where ~00 = 1 / #  o is the fluidity as ~" ~ 0 ,  | is the coefficient of instability of the s t ructure  of the liquid with 
increasing (decreasing) fluidity, r is the tangential shear  s t ress ,  W= 0r is the velocity gradient,  t is 
the t empera tu re  of the liquid, and r is the radius of the tube. 

The data of [3, 4] indicate the small (10-30%) effect of the shear  velocity on the p rocesses  of heat 
conduction. However, there are reasons to assume [5] that the shear  velocity can have a more  important  
effect on diffusional effects connected with mass  t r ans fe r  of the substance. 

For  small  values of ~- one can adopt the following interpolarion equation for  the coefficient of thermal  
res is tance (or diffusion) [6]: 

~.-~ (T) = )~0 -1 [t --~,on~. Irll, (2) 

where X0 -1 is the coefficient of thermal  res i s tance  as r ~ 0 .  

To solve the problem Eqs. (1)-(2) in dimensionless form with cer ta in  es t imates  and assumptions [1] 
are combined with the nonisothermal condition of equilibrium 
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the condi t ion  of cons t ancy  of the flow ra te  
1 

i w x  (t - -  y )  dY = - -  0.5, (5) 
0 

and the equa t ion  f o r  heat and m a s s  t r a n s f e r  

( a| w a ,~ ,_  ~ o i a.~] {6) 0,5Pc o Wx~X+ ~,y-gT)-- t - ) ' ~ -  ( I - - Y )  Z -l(~)~-F " 

In Eq. (6) u is unde r s tood  as the d i m e n s i o n l e s s  t e m p e r a t u r e  o r  c o n c e n t r a t i o n  of the subs tance ,  while 
X(T) is the r e s p e c t i v e  coef f ic ien t  of t h e r m a l  conduct iv i ty  o r  diffusion.  Here  Y =  y / R  = 1-(r /R)~,  X = x / R ,  
WX, Y =Wx,y/(W), ~ = {t--t0)/~w--t0), Pc |  = @) 2R/a  0, Re00 = @}Pr ~ =el(Pc| ~= p/p@2), X(T)=X0/X(r). 
F o r  convenience  we define T =~'/~'W, A = Y T / R ,  K=X0nXITw I, where  z~ is the d imens ion l e s s  th ickness  of 
the t h e r m a l  (diffusional) boundary  l aye r ,  ~w is the s h e a r  s t r e s s  at the wall of ~he channel ,  and ~P00 and | 
c o r r e s p o n d  to t o (the t e m p e r a t u r e  at the exit) .  

Ca lcu la t ions  of heat exchange by the in teg ra l  method a re  the m o s t  c o m m o n  at p r e s e n t .  In the p r e s -  
ent w o r k  the so lu t ion  of the s y s t e m  of d i f fe ren t ia l  equat ions  (1)-(6) f o r  the boundary  condi t ion tw =cons t  
is d e t e r m i n e d  by the method  of s u c c e s s i v e  app rox ima t ions .  

In the f i r s t  app rox ima t ion  we c o n s i d e r  the case  of Wy<<Co x. As a consequence  of this approx ima t ion  
awX/OX~ O, p ~ f ( y ) .  It is seen  f r o m  Eq. (3 ) tha t  

~ = l - y .  

In th is  ca se  the e x p r e s s i o n  fo r  ~'w is known [2]: 

[( 128~]0,5 i ] ~__ O 
_ 5 r 1 +  5Re| -~o p'k~ T~ 8 O ' " " 

Consequent ly ,  

~ ( Y ) = I - - K 0 - - Y ) .  

Equat ing the left  s ide of Eq. (6) to some  cons tan t  and al lowing fo r  the fact  that  a,~/aY=O and v =0 when 
1 - Y = 0 a n d t h a t  v = t w h e n Y = 0 ,  w e f i n d  

2 _ y ) 2  _ " _ y ) 3 ] .  (7 )  

A s s u m i n g  that  in a m o d e r a t e l y  wide t e m p e r a t u r e  in te rva l  a b inomia l  dependence of the type 

% ~ % (u) t + ~v, whereq~" %,0 1, 
goo %0 

(~ ~ 0 (o) ~,~),where~ O~ 
O| = t +  = ~ o  - - t ,  

is appl icable ,  in a c c o r d a n c e  with (1) we have 

The case  of (~gg~/cP00 ) > 1 and (|174 > 1 c o r r e s p o n d s  to heat ing of the liquid, while the case  of ~0oJq~00) < 1 
and |174 < 1 c o r r e s p o n d s  to cool ing of the l iquid.  

With the usual  boundary  condi t ions  the equat ion  fo r  the d i m e n s i o n l e s s  ve loc i ty  ove r  the c r o s s  s e c -  
t ion  of the channe l  with a l lowance f o r  (3) and (5) has  the f o r m  
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W-~(X,Y)=O,Si'~(~,~)(t--Y)dY O , Y )  ~(o,~)( l--V)dY dY . (9) 
to Lb 

Non-Newtonian liquids a re  c h a r a c t e r i z e d  by cons iderable  Prandt l  numbers  (q) and Schmidt numbers  
(Sc), i .e. ,  dynamic d i s tu rbances  p ropaga te  m o r e  intensely in them than t he rma l  (diffusional) d i s tu rbances .  
T h e r e f o r e ,  under  the conditions of the p r o b l e m  only those values of Y which a re  much s m a l l e r  than the 
height of the channel a re  impor tant  for  shor t  channels .  

�9 Substituting (8) into (9) with al lowance for  (7) and neglect ing (because of the sma l lnes s )  the t e r m s  
containing Y to m o r e  than the f i r s t  power ,  we obtain an e x p r e s s i o n  for  the d imens ion less  veloci ty which 
is valid fo r  the boundary region: 

W,o(Y)=PY,  
P = 4 [ i  + ~ + i0(t -+- t))l [i § 1 6 2  ~ i0(0.8 + ~n)] -~, (10) 

t 2 K t t K 
6 21 7 t2 

/ 7$~  n 
1 I _ K '  t t K"  
4 6 4 6 

In connection with the smal l  th ickness  of the t h e r m a l  boundary l aye r  (A<< 1), when the value of Y is 
negligibly smal l  com pa red  with unity within its l imi t s  one can wri te ,  in accordance  with (6), the equation 
fo r  the t e m p e r a t u r e  d is t r ibut ion n e a r  the wall: 

0.5 Pe (t - -  H) O, 0% �9 Y - J ' Z -  = a:y  ~" 

The value of K is de te rmined  through rco= (1/q~w)(OCOX/OY)y=o in accordance  with (10). 

Thus,  the cy l indr ica l  t h e r m a l  boundary l a y e r  is rep laced  here  by a f lat  boundary layer ,  which is 
fully admiss ib le  because  of its sma l l  th ickness .  

The s e l f - s i m i l a r  var iab le  

a ' l = Y ( - ~ ) - i / a ,  L = O . 5 P e o P ( t - - K )  

reduces  it to the o rd ina ry  equat ion (the p r i m e s  denote de r iva t ives  with r e spec t  to ~ ) 

~" -/- 3~%'=0, 

the solution of which fo r  the boundary conditions 

~=1 for Y~O, ~=0 for 

has the f o r m  

X = 0  

= t - -  IA2 i' exp (-- ~l a) d~l ~-~ i --  G (X) Y, 
0 

F r o m  this one can obtain an e x p r e s s i o n  fo r  the th ickness  of the t he rma l  boundary layer ,  

Let us use A in Eq. (9), 

W x  (X, Y)  = O,5.f'~(,,'~) (I - -  Y)  d Y  ( l - - Y )  ~(u, '~)(i  - -  Y) dY X 
0 l0 

d Y  + (i - -  Y) ~ (u,'~) (l - -  Y)  d Y  + ,- ~ ('~) (t - -  Y)  d Y (12) 
a 

Here  ~(~u) is introduced with al lowance for  the second approx imat ion  for  the t e m p e r a t u r e  prof i le ,  

~(~, ~) = i  +~p(i--V(x)Y)+i0[t +Q(i - -G(X)Y) I ( I - -Y ) .  

In tegra t ing (12) and neglect ing (because of sma l lness )  the t e r m s  in the final e x p r e s s i o n  fo r  Wx(X, Y) which 
contain Y to m o r e  than the f i r s t  power ,  we obtain 
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Wz(X, Y)=B~ (X) Y, 
B~(X) = [t + ,  d- io (1 + ~2)] [A (~p + ~io) + 0,25io1-L 

Since the  t h e r m a l  bounda ry  l a y e r  is f lat ,  f r o m  the condi t ion  of cont inui ty  we find 

i ~ t ~B~ (x)_ Wy --- -- .  "-YZ- dY = 2 ox y~. 
0 

Thus ,  Eq.  (6) is  r educed  to the f o r m  

_ ~0" __0,5aB,(X) _~.y~ ~,j 0.5 P% (l K) [Bz (X) Y 
~ 0 - ~ "  

By the i n t roduc t ion  of the v a r i a b l e  [7] 

x 1-1/3 
~h = Y exp (--  S (X)).I exp (S (X)) B (X) dX| , 

0 
X 

S (X) = 1.5 .f (B~ (X))-~ aB_,ax(X) dX, 
0 

B (X) = 0 5  Pe 0 ( I - - K )  B~ (X) 

Eq.  (14) is  t r a n s f o r m e d  to the o r d i n a r y  equa t ion  (the p r i m e s  denote d e r i v a t i v e s  with r e s p e c t  to ~?t) 

t 
~'~+ -~-~h~u' = O, 

the  so lu t ion  of which  with the b o u n d a r y  condi t ions  

has  the f o r m  

C onsequently, 

= I where Y = O, D ~- 0 whereX= 0 

, = . ! e x p ( - - + ~ h 3 ) d ~ l ~  . exp - - ~ r h  3 d~l~ . 

(13)  

(14) 

(15) 

) [ "~ dX ]-,/3 d, [ Nux = - -  2 (~-~~176 r=0 = - -  2 exp(--S(X))!exp(S(X))o B(X) J d~h l~,=0. (16) 

By d i f f e ren t i a t i ng  (15) and comput ing  the c o r r e s p o n d i n g  i n t e g r a l s  in (16), we find an e x p r e s s i o n  f o r  the 
loca l  Nusse l t  l m m b e r ,  

d ~/3 1 077 (x Pe0-;-) i(z/, (171 
f 3z 1.5 " ]-I/3 

] (~) = t ~  io.4 (~.5 - ~) - -~(~ ,~  - ~) + 2 (~o.~ _ ~)1~ , 

= i t  + ~ + i o ( i  + ~)1 ( i  - -  K)[i + 0.8io1,~ , 

Z =  l +  7.420p+~io) ( i -~m~p+i o(0.8+~n) t m ~i/3 
i + o . s i 0  ( i - - K ) [ l + r  ~il-~o T )  " 

In the c a s e  when  r = ~2 = K = 0 

l im ] "  (Z) -+ t ,  

we have the  w e l l - k n o w n  e x p r e s s i o n  f o r  the  i s o t h e r m a l  flow of s t r u c t u r a l l y  v i s cous  l iquids  [8], and when, 
in addit ion,  i 0 = 0 we have  the  e x p r e s s i o n  f o r  o r d i n a r y  Newtonian  l iquids  [1]. In Fig.  1 the r e s u l t s  of an 
ana ly t i ca l  c a l cu l a t i on  f o r  o r d i n a r y  l iquids  ( i0=K=0)  a c c o r d i n g  to Eq. (17) (curve 2: ~ / ( p o  = 2.5; c u r v e  5: 
(Pw/(P0 = 0.25; W y  ~0) a r e  c o m p a r e d  fo r  the s a m e  condi t ions  wi th  the t a b u l a r  da ta  of a n u m e r i c a l  c a l c u l a -  
t ion  by Yang W a n g - t s u  [9] (curve 7 : r p w / r P 0 = 2 . 5 ;  c u r v e  8: rpw/(P0=0.25; W y = 0 )  which w e r e  obta ined by 
an  i m p r o v e d  i n t eg ra l  me thod .  The  s l opes  of c u r v e s  2 and 5 d i f f e r  somewha t  f r o m  the s lopes  of the c u r v e s  
in [9], which is  ev iden t ly  connec ted  with the con t r ibu t ion  of the t r a n s v e r s e  componen t  of the ve loc i ty  to 
the heat  t r a n s f e r  in p r o p o r t i o n  to  the i n c r e a s e  in the t h e r m a l  boundary  l a y e r .  C u r v e s  1, 3, 4, and 6 of Fig.  
1 c o r r e s p o n d  to the v a l u e s  r 1, 0.4, and 0.1. 

The  Nusse l t  n u m b e r  d e t e r m i n e d  by the  p r e s e n t  method  without  a l lowance  f o r  W y  has  the f o r m  

f l - L O . 6 6 6 , ~ l / 3 /  t x ~i/3 Pe 
~+5-~65r t x ~  ] ~ ]  
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The dependence Nu X = f[ (1/Pe) (x/d)] plotted f rom this equation ( r~/90 = 
2.5) coincides with that of [9]. 

The agreement  of the resul ts  obtained by our method with the re -  
sults of the numerical  calculation of [9] in which nonlinear t e r m s  were 
taken into account in the approximation of the velocity profile indicates 
their  negligible effect on the heat exchange in the thermal  sect ion of 
channels when the s t r eam is hydrodynamically stabilized. 

A marked deviation is observed at r  andin  the range of (1/Pe)  
(x/d) ~ 1 0 - L 1 0  -~ the curve is located down an average of 3.5%. In ac-  
cordance with (13) the express ion for  the coefficient of fr ict ion for  a 
liquid moving in a tube takes the form 

~(X) = p<co;2q~co @ I,J=o I~o(a~-o,2) tq n~oo~O- -~ )  2 , 

where/x  is determined by Eq. i l l} .  

For  ordinary liquids (| = 0) when K = 0 

16 lira 
(X)  Re o (A~ q- 0,25} I;-O 

�9 2 , i/3 -~--i 

l : ~ e ~  

The results  Of calculation by Eq. (18) for  the cases  of heating (r > 0) and cooling (r < 0) of the liquid 
are shown in Fig. 2. The discontinuity in the solution as (1 /Pe) (x /d ) - -0  is explained by the abrupt change 
in viscosity at the leading point of the s tar t  of heating. 

Thus, equations are obtained f rom which the complexes determining the p rocess  are seen directly.  
The commonly used est imate of the effect of the nonisothermici ty on the heat t r ans fe r  and the coefficient 
of hydraulic res is tance based on only one pa rame te r  (#0/#w)n is incomplete, and it is neces sa ry  to allow 
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for  the effect  of the fac tor  [(1/Pe)(x/d)]  m of the p roces s .  The value [(1/Pe)(x/d)] can make an important  
contribution to the i so thermic i ty  function f(Z) = Nux/Nu 0, where Nu 0 = 1.077 [Pe (d/x)] 1/'~. The resul ts  of 
calculat ions by Eq. (17) fo r  the case  of | =K=O are  presented  in Fig. 3 (curves 1-4 cor respond to the val-  
ues ~w/r  2.5, I, and 0.4). 

Equations of analogous s t ruc ture  are  obtained for  the flow of a liquid in a flat slot.  
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