ALLOWANCE FOR THE EFFECT OF NONISOTHERMICITY
ON HEAT TRANSFER IN CHANNELS DURING THE LAMINAR
MOVEMENT OF LIQUIDS HAVING A LINEAR LAW OF FLUIDITY

V. I. Popov UDC 532.517.2

Nonisothermal heat exchange during the laminar flow of liquids having a linear law of
fluidity in the thermal initial section of channels is analyzed. The calculation for the
condition that t,;=const takes into account the effect of the temperature on the zero-
point fluidity and the coefficient of instability of the structure when the thermal con-
ductivity (diffusion) depends on the shear stress,

The problem of the effect of the nonisothermicity of a stream on the local heat exchange characteris-
tics during the flow of non-Newtonian liquids in the initial section of channels is very complicated. Because
of the nonlinearity of the original equations the estimates of the effect of nonisothermicity are based on the
results of numerical calculation [1]. It is desirable to have equations, if only approximate, reflecting the
effect in explicit form,

The main purpose of the present report is to take into account the dependence on the temperature and
the tangential shear stress (r) of the effect of the fluidity (the reciprocal of the viscosity u=1/¢) on the
principal dynamic and thermal characteristics of the laminar stream in the thermal initial section of chan-
nels. An established velocity profile at the entrance to the channel and a constant wall temperature along
its length are assigned in this case. It is also assumed that the Prandtl numbers of the liquids under con-
sideration are much larger than unity and that their coefficient of thermal conductivity can depend on T.
The calculations performed below remain in force for the study of effects in the diffusional initial section
of channels. In this case the fluidity is set up as a function of T and the concentration of the substance.

The calculation is conducted for rheological liquids (including the case of ordinary liquids with @ = 0)
which obey a linear law of fluidity [2]
W , .. .
— =008 = ¢ (1)1 0 ()], @)

where @;=1/1; is the fluidity as T —0, ® is the coefficient of instability of the structure of the liquid with
increasing (decreasing) fluidity, 7is the tangential shear stress, W=8wx/8r is the velocity gradient, t is
the temperature of the liquid, and r is the radius of the tube.

The data of [3, 4] indicate the small (10-30%) effect of the shear velocity on the processes of heat
conduction. However, there are reasons to assume [5] that the shear velocity can have a more important
effect on diffusional effects connected with mass transfer of the substance.

For small values of T one can adopt the following interpolarion equation for the coefficient of thermal
resistance (or diffusion) [6]:

At(T) = Ao L —hgny 1)1, 2)
where A,”! is the coefficient of thermal resistance as T —0.

To solve the problem Egs. (1)-(2) in dimensionless form with certain estimates and assumptions [1]
are combined with the nonisothermal condition of equilibrium
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the condition of continuity
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the condition of constancy of the flow rate
1
{Wx(l—Y)dY = —035, )
0 .
and the equation for heat and mass transfer
o & 8
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In Eq. (6) v is understood as the dimensionless temperature or concentration of the substance, while
MA{r) is the respective coefficient of thermal conductivity or diffusion. Here Y= y/R 1- (r/R X=x/R,
Wx v =wx g/ (W), v =t /(t(,J ty), Peg = (W) 2R/ay, Regy= (@R, P=¢/0y, BP= P/o¢?y, ) =ho/A(r).
For convenience we deflne T=7/Ty, A=yr/R, K=Am It |, where A is the dimensionless thickness of
the thermal (diffusional) boundary layer, 7, is the shear stress at the wall of the channel, and ¢4, and 8,
correspond to t; (the temperature at the exit).

Calculations of heat exchange by the integral method are the most common at present. Inthe pres-
ent work the solution of the system of differential equations (1)-(6) for the boundary condition t,, =const
is determined by the method of successive approximations.

In the first approximation we consider the case of wy<wy. As a consequence of this approximation
dwx/0x~ 0, p#f(y). It is seen from Eg. (3) that

T=1-Y.

In this case the expression for 7, is known [2]:

5 » 1288 10,5 e PR
T = g %[(1+5P‘£) ~1], f=g-pw”

o]

Consequently,
MY)=1—K(1-Y).

Equating the left side of Eq. (6) to some constant and allowing for the fact that 8»/8Y=0 and v =0 when
1= Y =0 and that »=1 when Y =0, we find

u_(i———-K) 1[(1_)’)2_{;}1{(1—}/)3]. )

Assuming that in a moderately wide temperature interval a binomial dependence of the type

= e (M Fou
Go = (200 =1+ v, where = (;O‘; —1,
6= 98‘:’ =1 + Qu,whereQ — % —1,
is applicable, in accordance with (1) we have
= U 5, 8
§O: D=0 1yt (14 ) [, (10 = g2, ). (®)

The case of (Fp/ @) > 1 and (®w/®0) > 1 corresponds to heating of the liquid, while the case of g, /@) <1
and ®w/®o< 1 corresponds to cooling of the liquid.

With the usual boundary conditions the equation for the dimensionless velocity over the cross sec-
tion of the channel with allowance for (3) and (5) has the form
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Non~Newtonian liquids are characterized by considerable Prandtl numbers (¢) and Schmidt numbers
(Sc), i.e., dynamic disturbances propagate more intensely in them than thermal (diffusional) disturbances.
Therefore, under the conditions of the problem only those values of Y which are much smaller than the
height of the channel are important for short channels.

‘Substituting (8) into (9) with allowance for (7) and neglecting (because of the smallness) the terms
containing Y to more than the first power, we obtain an expression for the dimensionless velocity which
is valid for the boundary region:

(D(Y)=PY7
P=41 ¢ £ il -+ Q1 [ + mp - i,(0.8 + Qn)I, (10)
A _ g 2 tx
mo B2 w112
Aty At
76 3

In connection with the small thickness of the thermal boundary layer (A< 1), when the value of Y is
negligibly small compared with unity within its limits one can write, in accordance with (6), the equation
for the temperature distribution near the wall:

av %y
0.5Pe(1 —K)Y -3 =

The value of K is determined through 7 ,= 1/ P (dwx/ By)y=0 in accordance with (10).

Thus, the dylindrical thermal boundary layer is replaced here by a flat boundary layer, which is
fully admissible because of its small thickness,

The self-similar variable
1/3
N= Y( ) , L=05Pe,P({1—~K)

reduces it to the ordinary equation {the primes denote derivatives with respect to 1)

v = 3n% =0,
the solution of which for the boundary conditions

pv=1 for Y=0, v=0 for X=0

has the form

mn

v=1—112 \'exp (— ) dy=1-—-GX)Y,
0

G (X) = 1.12(%)‘“3.

From this one can obtain an expression for the thickness of the thermal boundary layer,

A“—(z—fy 0) _ 0893(9’1)“3 (11)

Let us use A in Eq. (9),

WX(X,Y):0,5?5(1),;)(‘1—Y)d1’{}(1— [1{‘ (», 1:) 1—Y) dY]
0 i 0

1

A ’ Ty —1
xdy + \“(1—Y)[f5(u,r)(1—Y)dY+ g ) — )dY]dY} . (12)
A b A
Here @(t,v) is introduced with allowance for the second approximation for the temperature profile,

0B, D=1+ p1—G@Y)+igfl + QU —CX)Y)(1—Y).

Integrating (12) and neglecting (because of smallness) the terms in the final expression for Wy (X, Y) which
contain Y to more than the first power, we obtain .
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WX, Y)=B, (X) Y,
By (X) =1+ 9+ io (1 + I[A (Y + Qig) + 0,25i,]-. (13)

Since the thermal boundary layer is flat, from the condition of continuity we find

ToWg L 0B, (X)
Wy=—|r &= -3 =g 1"
Thus, Eq. (6) is reduced to the form
0.5 Pe, (1 — K) {Bl ()Y 25— 0,580 v %] - (14

By the introduction of the variable [7]

X -1/3
L=Y [exp (—S(X)) [ exp (S (X)) B(X) dX] ,

o
S(X) = 1.5? (B, (X))~ 218 gx,
B (X) = O..‘(S) Pe, (1 — K) B, (X)
Eq. (14) is transformed to the ordinary equation (the primes denote derivatives with respect to M)
" + %mzv’ =0,
the solution of which with the boundary conditions
v=1vhereY =0, v = 0 whereX=0

has the form

o ) -1
v = [exp (= ) dn, ( foxp(— nﬁ)dm) . (15)
e §
Consequently,
P X -1/3 4
Nug = — 2(5’;7)Y=0 _-—2 [exp (—S (X))ég exp (S (X)) B(X)dX J o S (16)

By differentiating (15) and computing the corresponding integrals in (16), we find an expression for the
local Nusselt number,
Nug = 1.077 (x Pe(,%)“3 (), am
) 3515 : 4 3 ~1/3
1@ = {104 @ — 1) — s — 1) 42—y
x=+p+i (1 + Q11— K + 0.8i,],
7 — 1 4 TR0 0y ( 1+ m + iy (0.8 -+ Qn) 1 = )1/3

1408, \(—E[{+9+40+ D]Pe, @

In the case when =2 =K=0
lim 7 (Z) -1,
Z->1

we have the well-known expression for the isothermal flow of structurally viscous liquids [8], and when,
in addition, i,=0 we have the expression for ordinary Newtonian liquids [1]. In Fig. 1 the results of an
analytical calculation for ordinary liquids (i,=K=0) according to Eq. (17) (curve 2: 9 /¢,=2.5; curve 5:
(pw/(p0=0.25; Wy #0) are compared for the same conditions with the tabular data of a numerical calcula-
tion by Yang Wang-tsu [9] (curve 7: ‘/’w/ @g=2.5; curve 8: q, /<p0=0.25; Wy =0) which were obtained by
an improved integral method. The slopes of curves 2 and 5 differ somewhat from the slopes of the curves
in {9], which is evidently connected with the contribution of the transverse component of the velocity to

the heat transfer in proportion to the increase in the thermal boundary layer. Curves 1, 3, 4, and 6 of Fig.
1 correspond to the values ¢,,/¢,=12.8, 1, 0.4, and 0,1.

The Nusselt number determined by the present method without allowance for Wy has the form

B {4 1/8 d \1/3
Nuy = 1.077 TZ066Bp 1A, 1 =z viE | (Pe‘?> .
, 1+5.56§¢( 1+w—) (FJT)
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The dependence Nux =f[(1/Pe)(x/d)] plotted from this equation (g/ @,=

—:—:’f . 2.5) coincides with that of [9].
The agreement of the results obtained by our method with the re-
/2 7 ; sults of the numerical calculation of [9] in which nonlinear terms were
' 2 E‘\ ; taken into account in the approximation of the velocity profile indicates
z , b . P .
i —- their negligible effect on the heat exchange in the thermal section of
vo 44— ' channels when the stream is hydrodynamically stabilized.
v A marked deviation is observed at =9, andin the range of (1/Pe)
0 P 8L Z.10° (x/d)#107?-107° the curve is located down an average of 3.5%. In ac-
Fig. 3 ° cordance with (13) the expression for the coefficient of friction for a
‘ liquid moving in a tube takes the form
sy 8 1 9oxl LAy -0.25) [( . 8B (AR--0,2) \05
<(X) = PO q, ay |,y Be(AR-0,2) ! Regg (A¢+0,25)2) 11’

where A is determined by Eq. (11).
For ordinary liquids (® =0) when K=0

o2 v 1/3 —1
e e 16 Bl ) . T3 i 18 18
Um () = ermp o) = Fe,, [1 + "42‘1’( e ) (ﬁ_d‘) : s

=0

The results of calculation by Eq. (18) for the cases of heating > 0) and cooling () <0) of the liquid
are shown in Fig. 2. The discontinuity in the solution as (1/Pe)(x/d) —0 is explained by the abrupt change
in viscosity at the leading point of the start of heating.

Thus, equations are obtained from which the complexes determining the process are seen directly.
The commonly used estimate of the effect of the nonisothermicity on the heat transfer and the coefficient
of hydraulic resistance based on only one parameter (uy/ ,uw)n is incomplete, and it is necessary to allow
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for the effect of the factor [(1/Pe)(x/d)]™ of the process. The value [(1/Pe)(x/d)] can make an important
contribution to the isothermicity function f(Z) = Nuy/Nuy, where Nuy=1.077 [Pe @/x)1*. The results of
calculations by Eq. (17) for the case of ® =K =0 are presented in Fig. 3 (curves 1-4 correspond to the val~
ues @,/9,=9, 2.5, 1, and 0.4).

Equations of analogous structure are obtained for the flow of a liquid in a flat slot,
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